Joint-Working-Group (Parlay, ETSI Project OSA, 3GPP CT5)
C5-050297
Meeting #31, Osaka, JAPAN, 09-13 May 2005
Source:
IBM (Joe McIntyre)
Title:
Namespaces
Agenda Item:
OSA3 (3GPP Rel-6)
Document for:
Discussion
This document describes the use of namespaces in Web Services, and how they are applied to the Parlay X Web Services Specifications and their related XML Schema and WSDL documents. This information may be of use for additional specification (29.199 Part 1) content, the creation of a Technical Report or other document form that provides information on namespace use, and for the general interest of the community.

Specification on use of namespaces

The use of namespaces is specified in 29.199 Part 1 (Common) in section 12 (WSDL usage and style) in subsection 12.2 (Namespaces). This covers the specific namespace root to be used for Parlay X Web Services, namespace elements for different document types, syntax for namespace elements, versioning of namespaces, and use of local namespaces.
Namespace definitions in each specification

Each specification has a ‘Namespace’ section that lists the namespaces that are applicable for that release of the specification. These namespaces include version information that is consistent between the specification document and the WSDL that accompanies the specification.

Why namespace versions are used

Maintaining a version number as part of the namespace enables multiple versions of a specification to be identified easily, both by human inspection (reading namespace information) and by machine inspection (parsing namespace).
In addition to the version information being contained in the namespace, the Parlay X Web Services WSDL documents also incorporate this same version number in the document file name.

These two mechanisms enable each specification document version to be uniquely identified, ensuring correct composition of documents even when multiple versions are present in a system.

When namespace versions are changed

When a specification document, or one of its dependent documents, changes then the version for the specification document is incremented. Incrementing of the major version or minor version number is dependent on the nature of the change (typically major version number changes at a release cycle, minor version number changes within a release cycle).

For example, if a specification has a types definition document and an interface definition document, then,

· If the types definitions document is updated, its version will be incremented. Since the interface definition is dependent on the types definition document, its version will be incremented as well.

· If the interface definition document is updated, but there are no changes to the types definition document, then only the interface definition document version is incremented (since the types definition document is not dependent on the interface definition document).

For common documents that are used across multiple specifications, a change in the common document will require updating the specification documents that are dependent on the common document (to update the reference to the common document) and thus their document versions will be incremented as well.

Benefit of managing namespace versions

Two primary benefits are realized by managing namespace versions.

· Clearly identified specification documents for the specification reader, developer or machine (for discovery).

· Possibility to have coexisting implementations of multiple versions of the same specification, since all artefacts are isolated and uniquely identifiable.

Discussion

Should any of this information be added to 29.199 Part 1 (Common)?

Should any of this information be put into a Technical Report (TR)?

Should any of this information be put into a FAQ or white paper or other type of document?
































